SIMULCAST - History and Basics

Simulcast Forum IWCE 2003

Joe Blaschka Jr., P.E.
ADCOMM Engineering Company
www.adcommeng.com
Basic Concepts

Definition

Simulcast is the simultaneous operation of two or more transmitters with overlapping coverage on the same frequency.

Simulcast is controlled interference.
Typical Simulcast Coverage

- TX1
 - Non-overlap
 - Overlap #1
- TX2
 - Overlap #1
 - Non-overlap
- TX3
 - Non-overlap
 - Overlap #2
Overlap Areas are Critical Areas

! Overlap areas are those where the RF levels are within 10-15 dB of each other.

! Acceptable size of overlap area depends primarily on maximum audio frequency being transmitted.

! Overlap effects are less pronounced in areas with high multipath and at higher frequencies.
Receiver audio is the sum of the signals being received.
Overlap Areas are Critical Areas

Overlap areas are those where the RF levels are within 10-15 dB of each other.

Acceptable size of overlap area depends primarily on maximum audio frequency being transmitted.

Overlap effects are less pronounced in areas with high multipath and at higher frequencies.
Overlap Areas are Critical Areas

! Simulcast audio will never sound as good as nonsimulcast in the overlap areas.

! Overlap areas outside main coverage areas may have significant distortion.

! Overlap areas are where we have to control the interference.
Controlled Interference Means:

- Controlled RF Frequency
- Controlled deviation
- Controlled audio phase

These three parameters must be controlled if simulcast is to work.
Remember FATS

F - Frequency
A - Amplitude
T - Timing
S - Signal Strength
RF Frequency/Phase

- Relative frequency between transmitters, not absolute frequency, is important.
- Less than 1 Hz difference between transmitters recommended.
- Ability to provide small offsets in relative frequency may be important but use carefully.
RF Frequency/Phase

Methods

- High Stability Crystal Oscillators - VHF only
- WWVB/GPS Locked XTAL - VHF and UHF
- GPS/Rubidium Locked XTAL - VHF, UHF, 800 MHz, and 900 MHz
RF Frequency/Phase

- Frequency or phase changes can cause rolling fade in overlap area
- VCO phase instability could cause problems
Deviations must be controlled

- Deviation causes rapid frequency/phase changes
- Distortion is caused by different deviations in receiver
- Recovered audio from each transmitter must be within .2 dB
- Cannot be set by service monitor
- Set by using monitor receiver
Amplitude/Deviation Control

- Low Drift Audio Transport Methods (Good)
 - Special analog MW mux
 - Digital channel banks
 - Special digital signal processing
 - RF links

- High Drift Audio Transport Methods (Bad)
 - Analog phone lines
 - Telco T1's
 - Voice over IP
Amplitude/Deviation Control

- Audio frequency response must be matched
 - Each transport route should have the same elements
 - Same type/vintage base stations should be used
- Audio levels held to within .2 dB or better
- Cannot adjust deviation with service monitor
Audio phase difference must not exceed 30 degrees.
Audio phase difference will be audio frequency dependent.
Audio Timing/Phase Control

- Audio phase must be stable
- Audio phase should be adjustable 1000-1500 microseconds
- Methods
 - Passive delay lines (ugh!)
 - Analog active delay lines
 - Digital delay lines
 - Digital signal processing
 - Time marked delay
- Phase is adjusted for the overlap area
- Transport method must keep constant phase
Signal Strength

- Control your overlaps.
- Less is better.
- Think lower elevation not higher.
- Coverage control using lower power and directional antennas.
RF Speed = 5.4 usec/mile
TX1 transit time 600 us + 54 us = 654 us
TX2 transit time 400 us + 81 us = 481 us
Overlap zone time difference = 27 us
30^N @ 1000 Hz = 83 us allowed
Digital data requires less delay difference
3600 bps = 11-13 miles
9600 bps = 6-9 miles
Maintenance Issues

* Individual components cannot be adjusted by themselves
* Standard test equipment cannot be used to make final adjustments
* Any maintenance action in the audio path requires system adjustments
* All measurements are made relative to other transmitters
Maintenance Issues

Typical test setup

- Monitor Receiver
- Scope
- Analog Voltmeter
- Audio
- TX1
- TX2
- AUDIO
- LEVEL ADJ.
- LEVEL ADJ.
- DELAY
- DELAY
- Audio Source
- Scope Sync
- Audio sweep and gated pulse generator
Maintenance Issues

SCOPE DISPLAY

Audio Burst

DELAY TIME

Audio Burst

TX AUDIO

RCV AUDIO

TRACE 1

TRACE 2
Maintenance Issues

! Make sure monitor receiver is not receiving any interference (Watch scope display!)

! Make sure everything is operating in the linear mode (no clipping!)

! Avoid temptation to “tweak” with adjustments

! No “Hoot N’ Holler” adjustments
Maintenance Issues - Digital Paging

ANT. → Monitor Receiver

TX1 → CHANNEL 1

CHANNEL 2 → Scope

Trigger Input → Square Wave Gen.

TX2 → LEVEL ADJ.

LEVEL ADJ. → DELAY

DELAY → Zetron Model 33
Maintenance Issues - Digital Paging

Input to Model 33

RCV AUDIO

SCOPE DISPLAY

Square Wave Burst

DELAY TIME

Square Wave Burst

TRACE 1

TRACE 2
Maintenance Issues

- Use the Convex 806A TIMS
 - Provides standard TIMS measurements
 - Provides delay measurements
 - Allows measurements to be computer controlled.
 - Download measurement information into Convex equalizer cards
 - Some difficulty getting over the air delay measurements
Narrowband Operation

- Main difference between wideband and narrowband FM
 - Narrow IF filters don’t deal with impulse noise as well (multipath holes)
 - Capture effect less pronounced (big affect)
 - Signal-to-noise ratio and audio recovery
- Frequency stability requirements the same.
- Deviation control is more critical.
- Overlap area control more critical
- Digital will help because audio distortion is reduced digital to analog conversion process
- Digital may be worse because coverage holes may develop in overlap areas
Why Simulcast?

- The right technology for modern times.
- Spectrally efficient.
- Provides excellent coverage
- Few alternatives
Equipment vendors and approaches

Motorola
- DSMII cards using a Premisys channel bank (now Zone)
- GPS timing control
- Bulk delay control
- Manual amplitude adjustment
- 4 audio paths per card

MA-COM Harris
- Delay card delays whole T1 or whole channel bank
- GPS timing control
- Bulk delay control
- Manual amplitude adjustment
- 24 circuits/48 if using ADPCM
- Marketed by Harris Intraplex for FM broadcast use
Equipment vendors and approaches

! Tait
 - Automated computer control
 - Audio delay adjustment
 - Audio level adjustment
 - Audio equalization
 - Can use either digital or analog mux

! Convex
 - Computer interface
 - Manual adjustments
 - Audio line equalization
 - Phase
 - Amplitude

! Allen Avionics
 - Manual LC type bulk delay modules
Who is ADCOMM Engineering Company?

! Communications consulting engineering company.
! Systems integration engineering is our speciality.
! We were doing simulcast when simulcast wasn’t cool!
! Non-vendor specific. We don’t sell hardware—only engineering.
! We are a “hands on” engineering company with lots of field experience.
! Clients include: Public safety, utilities, local government, federal government, and private industry.